Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 2): 124809, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37178877

RESUMO

Herein, we described for the first time, an efficient biogenic synthesis of APTs-AgNPs using acid protease from Melilotus indicus leaf extract. The acid protease (APTs) has an essential role in the stabilization, reduction, and capping of APTs-AgNPs. The crystalline nature, size, and surface morphology of APTs-AgNPs were examined using different techniques such as XRD, UV, FTIR, SEM, EDS, HRTEM, and DLS analysis. The generated APTs-AgNPs demonstrated notable performance as dual functionality (photocatalyst and antibacterial disinfection). By destroying 91 % of methylene blue (MB) in <90 min of exposure, APTs-AgNPs demonstrated remarkable photocatalytic activity. APTs-AgNPs also showed remarkable stability as a photocatalyst after five test cycles. Furthermore, the APTs-AgNPs was found to be a potent antibacterial agent with inhibition zones of 30(±0.5 mm), 27(±0.4 mm), 16(±0.1 mm), and 19(±0.7 mm) against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, respectively, under both light and dark conditions. Furthermore, APTs-AgNPs effectively scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, demonstrating their potent antioxidant activity. The outcomes of this study thus demonstrates the dual functionality of APTs-AgNPs produced using the biogenic approach method as a photocatalyst and an antibacterial agent for effective microbial and environmental control.


Assuntos
Nanopartículas Metálicas , Peptídeo Hidrolases , Peptídeo Hidrolases/farmacologia , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Endopeptidases/farmacologia , Escherichia coli , Testes de Sensibilidade Microbiana
2.
Polymers (Basel) ; 14(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36080604

RESUMO

Mucoadhesive polymers have an essential role in drug localization and target-specific actions in oral delivery systems. The current work aims to develop and characterize a new mucoadhesive polysaccharide polymer (thiolated xanthan gum-TXG and S-Protected thiolated xanthan gum-STX) that was further utilized for the preparation of repaglinide mucoadhesive tablets. The thiolation of xanthan gum was carried out by ester formation through the reaction of the hydroxyl group of xanthan gum and the carboxyl group of thioglycolic acid. Synthesis of TXG was optimized using central composite design, and TXG prepared using 5.303 moles/L of TGA and 6.075 g/L of xanthan gum can accomplish the prerequisites of the optimized formulation. Consequently, TXG was further combined with aromatic 2-mercapto-nicotinic acid to synthesize STX. TXG and STX were further studied for Fourier-transform infrared spectroscopy, rheological investigations, and Ellman's assay (to quantify the number of thiol/disulfide groups). A substantial rise in the viscosity of STX might be due to increased interactions of macromolecules liable for improving the mucosal adhesion strength of thiolated gum. STX was proven safe with the support of cytotoxic study data. Mucoadhesive formulations of repaglinide-containing STX showed the highest ex vivo mucoadhesion strength (12.78 g-RSX-1 and 17.57 g- RSX-2) and residence time (>16 h). The improved cross-linkage and cohesive nature of the matrix in the thiolated and S-protected thiolated formulations was responsible for the controlled release of repaglinide over 16 h. The pharmacokinetic study revealed the greater AUC (area under the curve) and long half-life with the RSX-2 formulation, confirming that formulations based on S-protected thiomers can be favorable drug systems for enhancing the bioavailability of low-solubility drugs.

3.
Drug Deliv ; 29(1): 2579-2591, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35915055

RESUMO

Benign prostatic hyperplasia (BPH) is a nonmalignant growth of the prostate tissue and causes urinary tract symptoms. To provide effective treatment, tamsulosin (TM), saw palmetto oil (SP), and pumpkin seed oil (PSO) were combined and fabricated a nanostructured lipid carrier (NLC) as TM-S/P-NLC using experimental design. The purpose was to enhance the permeation and therapeutic activity of TM; combining TM with SP and PSO in an NLC generates a synergistic activity. An optimized TM-S/P-NLC was obtained after statistical analysis, and it had a particle size, percentage of entrapment efficiency, and steady-state flux of 102 nm, 65%, and 4.5 µg/cm2.min, respectively. Additionally, the optimized TM-S/P-NLC had spherical particles with a more or less uniform size and a stability score of 95%, indicating a high level of stability. The in vitro release studies exhibited the optimized TM-S/P-NLC had the maximum release profile for TM (81 ± 4%) as compared to the TM-NLCs prepared without the addition of S/P oil (59 ± 3%) or the TM aqueous suspension (30 ± 5%). The plasma TM concentration-time profile for the TM-S/P-NLC and the marketed TM tablets indicated that when TM was supplied in a TM-S/P-NLC, the pharmacokinetic profile of the drug was improved. Simultaneously, in vivo therapeutic efficacy studies also showed favorable results for the TM-S/P-NLC in terms of the prostate weight and prostate index following treatment of BPH. Based on the findings of present study, we suggest that in the future, the TM-S/P-NLC could be a novel drug delivery system for treating BPH.


Assuntos
Cucurbita , Nanoestruturas , Hiperplasia Prostática , Portadores de Fármacos/farmacocinética , Excipientes , Humanos , Lipídeos , Masculino , Tamanho da Partícula , Extratos Vegetais , Óleos de Plantas , Hiperplasia Prostática/tratamento farmacológico , Serenoa , Tansulosina/uso terapêutico
4.
Pharmaceutics ; 14(4)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35456558

RESUMO

Skin infection compromises the body's natural defenses. Several antibiotics are no longer effective owing to the evolution of antimicrobial-resistant (AMR) bacteria, hence, the constant development of novel antibacterial agents. Naturally occurring antibacterial agents may be potential candidates for AMR bacterial infection treatments; however, caution should be taken when administering such agents due to the high incidence of toxicity. A fibrous material system from a biocompatible polymer that could be used as a skin patch for skin infections treatment caused by AMR bacteria is proposed in this study. Bee venom's active ingredient, melittin, was fabricated using electrospinning technology. Scanning electron microscopy showed that melittin-loaded fibers had smooth surfaces with no signs of beads or pores. The average diameter of this fibrous system was measured to be 1030 ± 160 nm, indicating its successful preparation. The melittin fibers' drug loading and entrapment efficiency (EE%) were 49 ± 3 µg/mg and 84 ± 5%, respectively. This high EE% can be another successful preparatory criterion. An in vitro release study demonstrated that 40% of melittin was released after 5 min and achieved complete release after 120 min owing to the hydrophilic nature of the PVP polymer. A concentration of ≤10 µg/mL was shown to be safe for use on human dermal fibroblasts HFF-1 after 24-h exposure, while an antibacterial MIC study found that 5 µg/mL was the effective antimicrobial concentration for S. aureus, A. baumannii, E. coli and Candida albicans yeast. A melittin-loaded fibrous system demonstrated an antibacterial zone of inhibition equivalent to the control (melittin discs), suggesting its potential use as a wound dressing patch for skin infections.

5.
Gels ; 8(3)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35323289

RESUMO

Tongue cancer is one of the most common carcinomas of the head and neck region. The antitumor activities of statins, including lovastatin (LV), and the essential oil of eucalyptus (Eu oil), have been adequately reported. The aim of this study was to develop a nanoemulgel containing LV combined with Eu oil that could then be made into a nanoemulsion and assessed to determine its cytotoxicity against the cell line human chondrosarcoma-3 (HSC3) of carcinoma of the tongue. An I-optimal coordinate-exchange quadratic mixture design was adopted to optimize the investigated nanoemulsions. The droplet size and stability index of the developed formulations were measured to show characteristics of the nanoemulsions. The optimized LV loaded self-nanoemulsifying drug delivery system (LV-Eu-SNEDDS) was loaded into the gelling agent Carbopol 934 to develop the nanoemulgel and evaluated for its rheological properties. The cytotoxic efficiency of the optimized LV-Eu-SNEDDS loaded nanoemulgel was tested for cell viability, and the caspase-3 enzyme test was used against the HSC3 cell line of squamous carcinoma of the tongue. The optimized nanoemulsion had a droplet size of 85 nm and a stability index of 93%. The manufactured nanoemulgel loaded with the optimum LV-Eu-SNEDDS exhibited pseudoplastic flow with thixotropic behavior. The developed optimum LV-Eu-SNEDDS-loaded nanoemulgel had the best half-maximal inhibitory concentration (IC50) and caspase-3 enzyme values of the formulations developed for this study, and these features improved the ability of the nanoemulsion-loaded gel to deliver the drug to the investigated target cells. In addition, the in vitro cell viability studies revealed the synergistic effect between LV and Eu oil in the treatment of tongue cancer. These findings illustrated that the LV-Eu-SNEDDS-loaded gel formulation could be beneficial in the local treatment of tongue cancer.

6.
Pharmaceutics ; 14(2)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35214093

RESUMO

Geriatric patients are more likely to suffer from multiple chronic diseases that require using several drugs, which are commonly ingested. However, to enhance geriatric patients' convenience, the electrospun nanofiber system was previously proven to be a successful alternative for the existing oral dosage forms, i.e., tablets and capsules. These nanofibers prepared either as single- or multi-layered fibers could hold at least one active compound in each layer. They might also be fabricated as ultra-disintegrated fibrous films for oral cavity administration, i.e., buccal or sublingual, to improve the bioavailability and intake of the administered drugs. Therefore, in this work, a combination of nifedipine and atorvastatin calcium, which are frequently prescribed for hypertension and hyperlipidemia patients, respectively, was prepared in a coaxial electrospinning system for buccal administration. Scanning electron microscopy image showed the successful preparation of smooth, non-beaded, and non-porous surfaces of the drug-loaded nanofibers with an average fiber diameter of 968 ± 198 nm. In contrast, transmission electron microscopy distinguished the inner and outer layers of those nanofibers. The disintegration of the drug-loaded nanofibers was ≤12 s, allowing the rapid release of nifedipine and atorvastatin calcium to 61% and 47%, respectively, after 10 min, while a complete drug release was achieved after 120 min. In vitro, a drug permeation study using Franz diffusion showed that the permeation of both drugs from the core-shell nanofibers was enhanced significantly (p < 0.05) compared to the drugs in a solution form. In conclusion, the development of drug-loaded nanofibers containing nifedipine and atorvastatin calcium can be a potential buccal delivery system.

7.
Gels ; 8(2)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35200484

RESUMO

The goal of the current study is to develop a chitosan alginate nanoparticle system encapsulating the model drug, simvastatin (SIM-CA-NP) using a novel polyelectrolytic complexation method. The formulation was optimized using the central composite design by considering the concentrations of chitosan and alginate at five different levels (coded as +1.414, +1, 0, -1, and -1.414) in achieving minimum particle size (PS-Y1) and maximum entrapment efficiency (EE-Y2). A total of 13 runs were formulated (as projected by the Design-Expert software) and evaluated accordingly for the selected responses. On basis of the desirability approach (D = 0.880), a formulation containing 0.258 g of chitosan and 0.353 g of alginate could fulfill the prerequisites of optimum formulation in achieving 142.56 nm of PS and 75.18% EE. Optimized formulation (O-SIM-CAN) was further evaluated for PS and EE to compare with the theoretical results, and relative error was found to be within the acceptable limits, thus confirming the accuracy of the selected design. SIM release from O-SIM-CAN was retarded significantly even beyond 96 h, due to the encapsulation in chitosan alginate carriers. The cell viability study and Caspase-3 enzyme assay showed a notable difference in contrast to that of plain SIM and control group. All these stated results confirm that the alginate-chitosan nanoparticulate system enhanced the anti-proliferative activity of SIM.

8.
Saudi Pharm J ; 30(1): 28-38, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35145343

RESUMO

Local production of pharmaceuticals plays a vital role in maintaining resilience of national healthcare systems, especially when it comes to facilitating access to needed medicines and decreasing exposure to imports and international supply chains. Pharma is a research-intensive industry and the systemic lack of governance and support to R&D activities in this sector, among other host of related issues such as unsupportive regulatory regimes and human resources capacity limitations, is one of the major impediments to the diversifying of locally produced pharmaceuticals portfolio. In this review, an overview of the current pharmaceutical production system in Saudi Arabia, its major challenges, and proposed remedies to address them will be highlighted.

9.
Drug Deliv ; 29(1): 254-262, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35014929

RESUMO

Candida albicans is the fungus responsible for oral candidiasis, a prevalent disease. The development of antifungal-based delivery systems has always been a major challenge for researchers. This study was designed to develop a nanostructured lipid carrier (NLC) of sesame oil (SO) loaded with miconazole (MZ) that could overcome the solubility problems of MZ and enhance its antifungal activity against oral candidiasis. In the formulation of this study, SO was used as a component of a liquid lipid that showed an improved antifungal effect of MZ. An optimized MZ-loaded NLC of SO (MZ-SO NLC) was used, based on a central composite design-based experimental design; the particle size, dissolution efficiency, and inhibition zone against oral candidiasis were chosen as dependent variables. A software analysis provided an optimized MZ-SO NLC with a particle size of 92 nm, dissolution efficiency of 88%, and inhibition zone of 29 mm. Concurrently, the ex vivo permeation rate of the sheep buccal mucosa was shown to be significantly (p < .05) higher for MZ-SO NLC (1472 µg/cm2) as compared with a marketed MZ formulation (1215 µg/cm2) and an aqueous MZ suspension (470 µg/cm2). Additionally, an in vivo efficacy study in terms of the ulcer index against C. albicans found a superior result for the optimized MZ-SO NLC (0.5 ± 0.50) in a treated group of animals. Hence, it can be concluded that MZ, through an optimized NLC of SO, can treat candidiasis effectively by inhibiting the growth of C. albicans.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase Bucal/tratamento farmacológico , Miconazol/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas/química , Óleo de Gergelim/química , Animais , Antifúngicos/administração & dosagem , Antifúngicos/farmacocinética , Química Farmacêutica , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Lipídeos/química , Masculino , Miconazol/administração & dosagem , Miconazol/farmacocinética , Mucosa Bucal , Tamanho da Partícula , Distribuição Aleatória , Ratos , Ovinos , Solubilidade , Propriedades de Superfície
10.
Sci Rep ; 12(1): 468, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013493

RESUMO

The present study was carried out to develop cisplatin-loaded chitosan nanoparticles (CCNP) and cisplatin-loaded chitosan nanoparticle surface linked to rituximab (mAbCCNP) as targeted delivery formulations. The two formulations (CCNP and mAbCCNP) exhibited significant physicochemical properties. The zetapotential (ZP) values of CCNP and mAbCCNP were 30.50 ± 5.64 and 26.90 ± 9.09 mV, respectively; while their particle sizes were 308.10 ± 1.10 and 349.40 ± 3.20 z.d.nm, respectively. The poly dispersity index (PDI) of CCNP was 0.257 ± 0.030 (66.6% PDI), while that of mAbCCNP was 0.444 ± 0.007 (57.60% PDI). Differential scanning calorimetry (DSC) revealed that CCNP had endothermic peaks at temperatures ranging from 135.50 to 157.69 °C. A sharp exothermic peak was observed at 95.79 °C, and an endothermic peak was observed at 166.60 °C. The XRD study on CCNP and mAbCCNP revealed distinct peaks at 2θ. Four peaks at 35.38°, 37.47°, 49.29°, and 59.94° corresponded to CCNP, while three distinct peaks at 36.6°, 49.12°, and 55.08° corresponded to mAbCCNP. The in vitro release of cisplatin from nanoparticles followed zero order kinetics in both CCNP and mAbCCNP. The profile for CCNP showed 43.80% release of cisplatin in 6 h (R2 = 0.9322), indicating linearity of release with minimal deviation. However, the release profile of mAbCCNP showed 22.52% release in 4 h (R2 = 0.9416), indicating linearity with sustained release. In vitro cytotoxicity studies on MCF-7 ATCC human breast cancer cell line showed that CCNP exerted good cytotoxicity, with IC50 of 4.085 ± 0.065 µg/mL. However, mAbCCNP did not elicit any cytotoxic effect. At a dose of 4.00 µg/mL cisplatin induced early apoptosis and late apoptosis, chromatin condensation, while it produced secondary necrosis at a dose of 8.00 µg/mL. Potential delivery system for cisplatin CCNP and mAbCCNP were successfully formulated. The results indicated that CCNP was a more successful formulation than mAbCCNP due to lack of specificity of rituximab against MCF-7 ATCC human breast cancer cells.


Assuntos
Antineoplásicos/química , Quitosana/química , Cisplatino/química , Portadores de Fármacos/química , Rituximab/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/fisiopatologia , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Humanos , Células MCF-7 , Nanopartículas/química , Tamanho da Partícula , Rituximab/farmacologia
11.
Pharmaceutics ; 13(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34959435

RESUMO

Alopecia areata is a scarless, localized hair loss disorder that is typically treated with topical formulations that ultimately only further irritate the condition. Hence, the goal of this study was to develop a nanoemulsion with a base of garlic oil (GO) and apple cider vinegar (APCV) and loaded with minoxidil (MX) in order to enhance drug solubilization and permeation through skin. A distance coordinate exchange quadratic mixture design was used to optimize the proposed nanoemulsion. Span 20 and Tween 20 mixtures were used as the surfactant, and Transcutol was used as the co-surfactant. The developed formulations were characterized for their droplet size, minoxidil steady-state flux (MX Jss) and minimum inhibitory concentration (MIC) against Propionibacterium acnes. The optimized MX-GO-APCV nanoemulsion had a droplet size of 110 nm, MX Jss of 3 µg/cm2 h, and MIC of 0.275 µg/mL. The optimized formulation acquired the highest ex vivo skin permeation parameters compared to MX aqueous dispersion, and varying formulations lacked one or more components of the proposed nanoemulsion. GO and APCV in the optimized formulation had a synergistic, enhancing activity on the MX permeation across the skin membrane, and the percent permeated increased from 12.7% to 41.6%. Finally, the MX-GO-APCV nanoemulsion followed the Korsmeyer-Peppas model of diffusion, and the value of the release exponent (n) obtained for the formulations was found to be 1.0124, implying that the MX permeation followed Super case II transport. These results demonstrate that the MX-GO-APCV nanoemulsion formulation could be useful in promoting MX activity in treating alopecia areata.

12.
Biomed Res Int ; 2021: 1622270, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34409099

RESUMO

This study investigates the antioxidant activities of lipid, protein, and carbohydrate extracts from the marine mollusk Perna canaliculus. Lipids were extracted using acetone, which was followed by protein extraction using the broad-spectrum enzyme Alcalase and then carbohydrate extraction using cetylpyridinium chloride. Eighty white BALB/c mice were divided into eight groups according to the administered extracts. Groups 1 and 5 were the control and toxin control groups, respectively. Groups 2, 3, and 4 were administered lipid, protein, and carbohydrate extracts, respectively. The other groups were administered P. canaliculus extracts as well as gentamicin and acetaminophen, known as ethanolic extracts, derived from Nerium oleander to induce oxidation stress. All groups showed significant improvements in body weight (p < 0.05). The lipid extract group showed a significant decrease in low-density lipoprotein cholesterol (p < 0.05) and a significant increase in high-density lipoprotein cholesterol (p < 0.05). After the toxin injection, all groups treated with P. canaliculus extracts showed increased antioxidant effects on hepatocytes (p < 0.05). The lipid extracts induced antioxidant effects to protect the kidney by increasing lipid peroxidation (p < 0.05) and catalase activities (p < 0.05). Also, protein extracts showed antioxidant effects by increasing glutathione and catalase levels significantly (p < 0.005). In conclusion, P. canaliculus extracts, especially lipids and proteins, have potent antioxidant activities that protect vital organs from oxidation stress.


Assuntos
Antioxidantes/administração & dosagem , Carboidratos/administração & dosagem , Lipídeos/administração & dosagem , Perna (Organismo)/química , Proteínas/administração & dosagem , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Produtos Biológicos/isolamento & purificação , Carboidratos/isolamento & purificação , Carboidratos/farmacologia , Catalase/metabolismo , Etanol/administração & dosagem , Etanol/farmacologia , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/isolamento & purificação , Lipídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Nerium/química , Estresse Oxidativo/efeitos dos fármacos , Proteínas/isolamento & purificação , Proteínas/farmacologia
13.
Sci Rep ; 11(1): 9914, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972626

RESUMO

The purpose of this study was to develop a novel nano antibacterial formulation of dextran sulfate sodium polymer. The dextran sulfate sodium (DSS) nanoparticles were formulated with gelation technique. The nanoparticles exhibited significant physicochemical and effective antibacterial properties, with zeta potential of - 35.2 mV, particle size of 69.3 z d nm, polydispersity index of 0.6, and percentage polydispersity of 77.8. The DSS nanoparticles were stable up to 102 °C. Differential scanning calorimetry revealed an endothermic peak at 165.77 °C in 12.46 min, while XRD analysis at 2θ depicted various peaks at 21.56°, 33.37°, 38.73°, 47.17°, 52.96°, and 58.42°, indicating discrete nanoparticle formation. Antibacterial studies showed that the DSS nanoparticles were effective against Gram-positive and Gram-negative bacteria. The minimum inhibitory concentrations of DSS nanoparticles for Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), Streptococcus pyogenes (S. pyogenes), Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Klebsiella pneumoniae (K. pneumoniae) and Proteus vulgaris (P. vulgaris) were 150, 200, 250, 150, 200, 250, 250 µg/mL, respectively. The antibacterial effects of DSS nanoparticles were in the order E. coli (26 ± 1.2 mm) at 150 µg/mL > S. pyogenes (24.6 ± 0.8 mm) at 250 µg/mL > B. subtilis (23.5 ± 2 mm) at 150 µg/mL > K. pneumoniae (22 ± 2 mm) at 250 µg/mL > P. aeruginosa (21.8 ± 1 mm) at 200 µg/mL > S. aureus (20.8 ± 1 mm) at 200 µg/mL > P. vulgaris (20.5 ± 0.9 mm) at 250 µg/mL. These results demonstrate the antibacterial potency of DSS injectable nanoparticles.


Assuntos
Antibacterianos/farmacologia , Sulfato de Dextrana/farmacologia , Nanopartículas/química , Polímeros/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Coloides , Sulfato de Dextrana/administração & dosagem , Sulfato de Dextrana/química , Composição de Medicamentos/métodos , Liofilização , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Injeções , Testes de Sensibilidade Microbiana , Nanopartículas/administração & dosagem , Tamanho da Partícula , Polímeros/química
14.
Pharmaceutics ; 13(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477855

RESUMO

The orally disintegrating tablet (ODT) has shown vast potential as an alternative oral dosage form to conventional tablets wherein they can disintegrate rapidly (≤30 s) upon contact with saliva fluid and should have an acceptable mouthfeel as long as their weight doesn't exceed 500 mg. However, owing to the bitterness of several active ingredients, there is a need to find a suitable alternative to ODTs that maintains their features and can be taste-masked more simply and inexpensively. Therefore, electrospun nanofibers and solvent-cast oral dispersible films (ODFs) are used in this study as potential OD formulations for prednisolone sodium phosphate (PSP) that is commercially available as ODTs. The encapsulation efficiency (EE%) of the ODFs was higher (≈100%) compared to the nanofibers (≈87%), while the disintegration time was considerably faster for the electrospun nanofibers (≈30 s) than the solvent-cast ODFs (≈700 s). Hence, accelerated release rate of PSP from the nanofibers was obtained, due to their higher surface area and characteristic surface morphology that permitted higher wettability and thus, faster erosion. Taste-assessment study using the electronic-tongue quantified the bitterness threshold of the drug and its aversiveness concentration (2.79 mM). Therefore, a taste-masking strategy would be useful when further formulating PSP as an OD formulation.

15.
Pharmaceutics ; 12(12)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302338

RESUMO

Pressure ulcer or bedsore is a form of skin infection that commonly occurs with patients admitted to the hospital for an extended period of time, which might lead to severe complications in the absence of medical attention, resulting in infection either by drug-sensitive or drug-resistant bacteria. Halicin, a newly discovered drug effective against several bacterial strains, including multidrug-resistant bacteria, was investigated to reduce bacterial infection burden. This study aims to formulate halicin into electrospun fibers to be applied in bedsores as antibacterial dressing to assess its efficacy against gram-positive (Staphylococcus aureus) and gram-negative bacteria (Escherichia coli and Acinetobacter baumannii) by studying the minimum inhibitory concentration (MIC) and bacterial zone of inhibition assays. The diameters of inhibition growth zones were measured, and the results have shown that the drug-loaded fibers were able to inhibit the growth of bacteria compared to the halicin discs. The release profile of the drug-loaded fibers exhibited a complete release of the drug after 2 h. The results demonstrated that the drug-loaded fibers could successfully release the drug while retaining their biological activity and they may be used as a potential antimicrobial dressing for patients with pressure ulcers caused by multidrug resistant bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA